
Fast Shortest Paths Algorithms

in the Presence of Few Negative Arcs

Domenico Cantone and Simone Faro

Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy

{cantone | faro}@dmi.unict.it

The shortest paths problem on weighted directed graphs is one of the basic network
optimization problems. Its importance is mainly due to its applications in various areas,
such as communication and transportation. Given a source node s in a weighted directed
graph G, with n nodes and m arcs, the single-source shortest path problem (SSSP, for
short) from s is the problem of finding the minimum weight paths from s to all other
nodes of G. The all-pairs shortest paths problem (APSP, for short) consists in finding
the minimum weight paths for each pair of nodes in G. In this paper we present hybrid
algorithms for the SSSP and the APSP problems which are asymptotically fast when
run on graphs with few negative weight arcs.

We begin by reviewing the relevant notations and terminology. A directed graph is
represented as a pair G = (V, E), where V is a finite set of nodes and E ⊆ V × V

is a set of arcs such that E does not contain any self-loop of the form (v, v). In this
context, we usually put n = |V | and m = |E|. A weight function ω on G = (V, E) is
any real function ω : E → R. A path in G = (V, E) from u to v is any finite sequence
(v0, v1, . . . , vk) of nodes such that v0 = u, vk = v, and (vi, vi+1) is an arc of G, for
i = 0, 1, . . . , k−1. An arc (vj, vj+1) in a path (v0, v1, . . . , vk) is internal if 0 < j < k−1.
An unspecified path from u to v will be also denoted by (u v). The weight function
can be naturally extended over paths by setting ω(v0, v1, . . . , vk) =

∑k−1

i=0
ω(vi, vi+1). A

minimum weight path (or shortest path) from u to v is a path in G = (V, E) whose
weight is minimum among all paths from u to v.
Provided that v is reachable from u and that no path from u to v goes through a
negative weight cycle, a minimum weight path from u to v always exists; in such a case
we denote by δ(u, v) the weight of a minimum path from u to v. If v is not reachable
from u, we set δ(u, v) = +∞. Finally, if there is a path from u to v through a negative
weight cycle, we set δ(u, v) = −∞. The function δ : V × V → R∪ {+∞,−∞} is called
the distance function on (G, ω). Finally an arc of graph G is said to be optimal if it
participates in some shortest path. We denote by m∗(G) (or simply m∗) the number of
optimal arcs in G. Observe that an arc (u, v) is optimal if and only if ω(u, v) = δ(u, v).
Most of the algorithms working on the fundamental comparison-addition model are
based on the general labeling method. Such method maintains a shortest-path estimate

function d : V ×V → R∪{+∞}, which is initialized (in procedure Initialize) by setting
d(u, v) := ω(u, v), if (u, v) ∈ E, otherwise d(u, v) := +∞. Subsequently shortest-path
estimate d is updated by assignments of the form d(u, v) := d(u, z) + d(z, v), provided
that d(u, v) > d(u, z) + d(z, v) holds, within Update(u, z, v) operations. It turns out
that d(u, v) ≥ δ(u, v) is maintained as an invariant, for each ordered pair u, v ∈ V (cf.
[CLRS01]).

1 A New Algorithm for the SSSP problem

In this section we present a new algorithm for the single source shortest path problem
in the presence of few sources or few destinations of negative arcs. It is a generalization
of Yap’s approach [Yap83].

We begin with some notations. As before, let G = (V, E) be a directed graph with
weight function ω : E → R and source s ∈ V .

The SSSP algorithms based on the general labeling method maintains the shortest-
path estimate as a function d : V → R∪{+∞}, where d(v) = d(s, v). Initially, one sets
d(s) := 0 and d(v) := +∞ for v ∈ V \ {s}. Subsequently, the shortest-path estimate
d is updated only by assignments of the form d(v) := d(u) + ω(u, v), provided that
d(v) > d(u) + ω(u, v) holds, for all (u, v) ∈ E, within procedure Scan(u). It turns out
that d(v) ≥ δ(s, v) is maintained as an invariant, for v ∈ V .

Let e1 = (p1, q1) , e2 = (p2, q2) , . . . , eη = (pη, qη) be the negative weight arcs in
G. Let S−

G = {p1, p2, . . . , pη} be the set of sources of the negative arcs in G and let
T−

G = {q1, q2, . . . , qη} be the set of destinations of the negative arcs in G. Let us also set
ℓσ = |S−

G |, ℓτ = |T−

G |, and ℓ = min(ℓσ, ℓτ). Next, we define the hinge set H of (G, ω) by
setting H = S−

G if ℓσ ≤ ℓτ , while H = T−

G otherwise.

Plainly, |H| = ℓ. Additionally, we define the extended hinge set H of (G, w) by H =
H ∪ {s}. Let s1, s2, . . . , sℓ̄ be the elements of H , where s1 is the source s and ℓ̄ = |H|.
Notice that ℓ ≤ ℓ̄ ≤ ℓ + 1.

We are now ready to describe our algorithm.

Step 1. For each si ∈ H , apply Dijkstra’s algorithm [Dij59] to (G, ω) with source node
si. Let ḋ(si, v) be the distances computed by the call to Dijkstra’s algorithm from source
si, with v ∈ V . (Notice that in general ḋ(si, v) 6= δ(si, v).)
Step 2. Construct the weighted graph (G̈, ω̈), where G̈ is the complete directed graph
(with no self-loops) over H , i.e., G̈ = (H, E), with E = {(si, sj) | i, j = 1, . . . , ℓ̄ , i 6= j} ,

and where ω̈(si, sj) = ḋ(si, sj), for all i, j = 1, . . . , ℓ̄ such that i 6= j.
Step 3. Apply the Bellman-Ford-Moore algorithm [Bel58,For56,Moo59] to the weighted
graph (G̈, ω̈) from the source s1 = s. If negative weight cycles reachable from s1 in (G̈, ω̈)
are detected, notify the presence in (G, ω) of negative weight cycles reachable from the
source node and exit. Otherwise go to the next step.
Step 4. After having initialized the shortest-path estimate d(v), for each v ∈ G, as
d(v) = d̈(si) if v = si, for some i = 1, . . . , ℓ̄, and d(v) = +∞ otherwise, call procedure
Scan(si) for each si ∈ H .
Step 5. Apply Dijkstra’s algorithm to the weighted graph (G, ω) with source s, where
the shortest-path estimate d(v) is initialized with the values computed in Step 4.

Since, as noted before, we have ℓ ≤ ℓ̄ ≤ ℓ + 1, then the ℓ̄ applications of Dijkstra’s
algorithm in Step 1 take a total time complexity of O(ℓ(m + n log n)), provided that
we use Fibonacci heaps [FT87] to implement the service priority queue. In addition,
Step 2 and Step 3 take O(ℓ2)-time and O(ℓ3)-time, respectively, whereas Step 4 takes
O(ℓ + m)-time. Finally, the last application of Dijkstra’s algorithm in Step 5 takes
O(m + n log n)-time.

Summing up, it follows that our algorithm has an overall O(ℓ(m + n log n + ℓ2))-time
complexity.
It turns out that, if ℓ = o(3

√
mn) then our algorithm is asymptotically faster than the

Bellman-Ford-Moore algorithm. Indeed, if ℓ = o(3
√

mn) then we have: ℓ3 = o(mn);
ℓm = o(mn), since m = O(n2) so that ℓ = o(

3
√

n3) = o(n); ℓn log n = o(mn); in-
deed, the assumption n = O(m) yields n 3

√
mn log n = O(n

3
√

m2 log m); in addition,
as

3
√

m2 log m = O(m) we also have n
3
√

m2 log m = O(mn). Thus, since ℓn log n =
o(n 3

√
mn log n), we have n log n = o(mn). The above considerations yield immediately

that if ℓ = o(3
√

mn), then ℓ(m + n log n + ℓ2) = o(mn).

2 A New Algorithm for the APSP Problem

In this section we present a new algorithm for the all-pairs shortest paths problem
in the presence of few negative weight arcs. Our algorithm generalizes the approach
presented above and is a hybridization of Dijkstra’s, Floyd’s [Flo62], and the Hidden
Paths [KKP93] algorithms.
As before, let G = (V, E) be a directed graph, with n = |V | and m = |E|, having a
weight function ω : E → R. Let e1 = (p1, q1) , e2 = (p2, q2) , . . . , eη = (pη, qη) be
the negative weight arcs in G. Let S−

G = {p1, p2, . . . , pη} be the set of sources of the
negative arcs in G and let T−

G = {q1, q2, . . . , qη} be the the set of destinations of the
negative arcs in G.
In this case, the hinge set H of (G, ω) is defined by H = S−

G ∪ T−

G . Let k = |H|.
Plainly, k ≤ 2η, where η is the number of negative arcs in G.
We are now ready to describe our algorithm.

Step 1. For each si ∈ H , apply Dijkstra’s algorithm to (G, ω) from the source node
si, and let ḋ(si, v) be the distance function so computed. Notice in general we have
ḋ(si, v) 6= δ(si, v), i.e., the distances computed are not necessarily correct.
Step 2. Construct the weighted graph (G̈, ω̈), where G̈ = (H, Ë) is the directed graph
(with no self-loops) over H , with Ë = {(si, sj) | i, j = 1, . . . , k , i 6= j and ḋ(si, sj) 6=
+∞} , and where ω̈(si, sj) = ḋ(si, sj), for all (si, sj) ∈ Ë.
Observe that if every node in H is reacheable from all nodes in H , then the graph G̈ is
a complete directed graph, with no self-loops.
Step 3. Apply Floyd’s algorithm to the weighted graph (G̈, ω̈), and let d̈(si, sj) be the
distances computed, for i, j = 1, . . . , k with i 6= j. If no negative weight cycle is present,
then the distance function d̈ computed by the above call to the Floyd’s algorithm is
correct, in the sense that d̈(si, sj) = δ(si, sj), for all i, j = 1, . . . , k such that i 6= j.
Step 4. Construct the weighted graph (G̃, ω̃), by superimposing (G̈, ω̈) to (G, ω) in the
following way. Let Ẽ = E ∪ Ë. Then we put G̃ = (V, Ẽ). Also, we put ω̃(u, v) = d̈(u, v)
if u, v ∈ H , and ω̃(u, v) = ω(u, v) otherwise. Notice that we plainly have |E| ≤ |Ẽ| <

m + k2.
Step 5. For each si ∈ H , apply Dijkstra’s algorithm to (G̃, ω̃), from source node si,
and let d̃(si, v) be the distance function so computed, v ∈ V .
It turns out that the distance function d̃ computed by Step 5 is correct, in the sense
that d̃(si, v) = δ(si, v), for all si ∈ H and v ∈ V .

Step 6. Let Ĝ = (V, Ê), where Ê = E ∪ {(u, v) : u ∈ H and v ∈ V } and let the weight
function ω̂ be defined as ω̂(u, v) = d̃(u, v) if u ∈ H , and ω̂(u, v) = ω(u, v) otherwise.
Apply the Hidden Paths algorithm to the weighted graph (Ĝ, ω̂) and let d̂(u, v) be the
resulting distance function.
In view of the observation at the end of the previous step, the weighted graph (Ĝ, ω̂)
can contain at most kn optimal arcs more than (G, ω).
At the end of Step 6 we have d̂(u, v) = δ(u, v), for every u, v ∈ V , i.e. our algorithm is
correct.

The k applications of Dijkstra’s algorithm in Step 1 take a total time complexity of
O(k(m+n log n)). Then, the two graph constructions in Steps 2 and 4 take respectively
O(k2) and O(n + m + k2)-time. The execution of Floyd’s algorithm in Step 3, with an
input graph with k nodes, takes O(k3)-time, whereas the k applications of Dijkstra’s
algorithm in Step 5 take a total time complexity of O(k(m + k2 + n log n)), since G̃

contains O(m + k2) arcs. Finally, Step 6 takes O(n2)-time for the initialization of the
weight function ω̂, and O(nm̂∗ + n2 log n)-time for the last application of the Hidden
Paths algorithm on Ĝ, where m̂∗ is the number of arcs participating in shortest paths
in Ĝ, yielding a total time complexity for Step 6 of O(nm∗ + kn2 + n2 log n).
Summing up, our algorithm has an overall O(k3+kn2+nm∗+n2 log n)-time complexity.
It follows immediately that when k = o(n) and m∗ = o(n2) our algorithm is asymptot-
ically faster than Floyd’s algorithm.
In addition, if k = o(n) and k = O(m∗

n
+ log n), then our algorithm achieves the

same time complexity O(nm∗ +n2 log n) of the Hidden Paths algorithm, which however
solves the APSP problem only for nonnegative weighted graphs. Indeed, if k = o(n)
and k = O(m∗

n
+ log n), then we have k3 = o(kn2) and kn2 = O(nm∗ + n2 log n), so

that O(k3 + kn2 + nm∗ + n2 log n) = O(nm∗ + n2 log n).
We also observe that if k = O(m∗

n
+ log n) and m∗ = O(n log n), then our algo-

rithm achieves a O(n2 log n)-time complexity. Indeed, if k = O(m∗

n
+ log n) and m∗ =

O(n log n), then k = O(log n), so that k3 = O(log3 n), kn2 = O(n2 log n), and nm∗ =
O(n2 log n), which all together yield O(k3 + kn2 + nm∗ + n2 log n) = O(n2 log n).

References

[Bel58] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90, 1958.
[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to

Algorithms. McGraw-Hill Higher Education, 2001.
[Dij59] Edsger. W. Dijkstra. A note on two problems in connexion with graphs. In Numerische Mathematik,

volume 1, pages 269–271. Mathematisch Centrum, Amsterdam, The Netherlands, 1959.
[Flo62] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, 1962.
[For56] L.R. Ford. Network flow theory. Paper P-923, The RAND Corperation, Santa Monica, California,

August 1956.
[FT87] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved network

optimization algorithms. J. ACM, 34(3):596–615, 1987.
[KKP93] David R. Karger, Daphne Koller, and Steven J. Phillips. Finding the hidden path: Time bounds for

all-pairs shortest paths. SIAM Journal on Computing, 22:1199–1217, 1993.
[Moo59] Edward F. Moore. The shortest path through a maze. In Proceedings of the International Symposium

on the Theory of Switching, pages 285–292. Harvard University Press, 1959.
[Yap83] Chee-Keng Yap. A hybrid algorithm for the shortest path between two nodes in the presence of few

negative arcs. Inf. Process. Lett., 16(4):181–182, 1983.

